3.17 \(\int \frac{\cot ^2(d+e x)}{\sqrt{a+b \tan (d+e x)+c \tan ^2(d+e x)}} \, dx\)

Optimal. Leaf size=395 \[ -\frac{\sqrt{-\sqrt{a^2-2 a c+b^2+c^2}+a-c} \tan ^{-1}\left (\frac{b-\left (-\sqrt{a^2-2 a c+b^2+c^2}+a-c\right ) \tan (d+e x)}{\sqrt{2} \sqrt{-\sqrt{a^2-2 a c+b^2+c^2}+a-c} \sqrt{a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{\sqrt{2} e \sqrt{a^2-2 a c+b^2+c^2}}+\frac{\sqrt{\sqrt{a^2-2 a c+b^2+c^2}+a-c} \tan ^{-1}\left (\frac{b-\left (\sqrt{a^2-2 a c+b^2+c^2}+a-c\right ) \tan (d+e x)}{\sqrt{2} \sqrt{\sqrt{a^2-2 a c+b^2+c^2}+a-c} \sqrt{a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{\sqrt{2} e \sqrt{a^2-2 a c+b^2+c^2}}+\frac{b \tanh ^{-1}\left (\frac{2 a+b \tan (d+e x)}{2 \sqrt{a} \sqrt{a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{2 a^{3/2} e}-\frac{\cot (d+e x) \sqrt{a+b \tan (d+e x)+c \tan ^2(d+e x)}}{a e} \]

[Out]

-((Sqrt[a - c - Sqrt[a^2 + b^2 - 2*a*c + c^2]]*ArcTan[(b - (a - c - Sqrt[a^2 + b^2 - 2*a*c + c^2])*Tan[d + e*x
])/(Sqrt[2]*Sqrt[a - c - Sqrt[a^2 + b^2 - 2*a*c + c^2]]*Sqrt[a + b*Tan[d + e*x] + c*Tan[d + e*x]^2])])/(Sqrt[2
]*Sqrt[a^2 + b^2 - 2*a*c + c^2]*e)) + (Sqrt[a - c + Sqrt[a^2 + b^2 - 2*a*c + c^2]]*ArcTan[(b - (a - c + Sqrt[a
^2 + b^2 - 2*a*c + c^2])*Tan[d + e*x])/(Sqrt[2]*Sqrt[a - c + Sqrt[a^2 + b^2 - 2*a*c + c^2]]*Sqrt[a + b*Tan[d +
 e*x] + c*Tan[d + e*x]^2])])/(Sqrt[2]*Sqrt[a^2 + b^2 - 2*a*c + c^2]*e) + (b*ArcTanh[(2*a + b*Tan[d + e*x])/(2*
Sqrt[a]*Sqrt[a + b*Tan[d + e*x] + c*Tan[d + e*x]^2])])/(2*a^(3/2)*e) - (Cot[d + e*x]*Sqrt[a + b*Tan[d + e*x] +
 c*Tan[d + e*x]^2])/(a*e)

________________________________________________________________________________________

Rubi [A]  time = 0.764539, antiderivative size = 395, normalized size of antiderivative = 1., number of steps used = 11, number of rules used = 8, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.242, Rules used = {3700, 6725, 730, 724, 206, 987, 1030, 205} \[ -\frac{\sqrt{-\sqrt{a^2-2 a c+b^2+c^2}+a-c} \tan ^{-1}\left (\frac{b-\left (-\sqrt{a^2-2 a c+b^2+c^2}+a-c\right ) \tan (d+e x)}{\sqrt{2} \sqrt{-\sqrt{a^2-2 a c+b^2+c^2}+a-c} \sqrt{a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{\sqrt{2} e \sqrt{a^2-2 a c+b^2+c^2}}+\frac{\sqrt{\sqrt{a^2-2 a c+b^2+c^2}+a-c} \tan ^{-1}\left (\frac{b-\left (\sqrt{a^2-2 a c+b^2+c^2}+a-c\right ) \tan (d+e x)}{\sqrt{2} \sqrt{\sqrt{a^2-2 a c+b^2+c^2}+a-c} \sqrt{a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{\sqrt{2} e \sqrt{a^2-2 a c+b^2+c^2}}+\frac{b \tanh ^{-1}\left (\frac{2 a+b \tan (d+e x)}{2 \sqrt{a} \sqrt{a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{2 a^{3/2} e}-\frac{\cot (d+e x) \sqrt{a+b \tan (d+e x)+c \tan ^2(d+e x)}}{a e} \]

Antiderivative was successfully verified.

[In]

Int[Cot[d + e*x]^2/Sqrt[a + b*Tan[d + e*x] + c*Tan[d + e*x]^2],x]

[Out]

-((Sqrt[a - c - Sqrt[a^2 + b^2 - 2*a*c + c^2]]*ArcTan[(b - (a - c - Sqrt[a^2 + b^2 - 2*a*c + c^2])*Tan[d + e*x
])/(Sqrt[2]*Sqrt[a - c - Sqrt[a^2 + b^2 - 2*a*c + c^2]]*Sqrt[a + b*Tan[d + e*x] + c*Tan[d + e*x]^2])])/(Sqrt[2
]*Sqrt[a^2 + b^2 - 2*a*c + c^2]*e)) + (Sqrt[a - c + Sqrt[a^2 + b^2 - 2*a*c + c^2]]*ArcTan[(b - (a - c + Sqrt[a
^2 + b^2 - 2*a*c + c^2])*Tan[d + e*x])/(Sqrt[2]*Sqrt[a - c + Sqrt[a^2 + b^2 - 2*a*c + c^2]]*Sqrt[a + b*Tan[d +
 e*x] + c*Tan[d + e*x]^2])])/(Sqrt[2]*Sqrt[a^2 + b^2 - 2*a*c + c^2]*e) + (b*ArcTanh[(2*a + b*Tan[d + e*x])/(2*
Sqrt[a]*Sqrt[a + b*Tan[d + e*x] + c*Tan[d + e*x]^2])])/(2*a^(3/2)*e) - (Cot[d + e*x]*Sqrt[a + b*Tan[d + e*x] +
 c*Tan[d + e*x]^2])/(a*e)

Rule 3700

Int[tan[(d_.) + (e_.)*(x_)]^(m_.)*((a_.) + (b_.)*((f_.)*tan[(d_.) + (e_.)*(x_)])^(n_.) + (c_.)*((f_.)*tan[(d_.
) + (e_.)*(x_)])^(n2_.))^(p_), x_Symbol] :> Dist[f/e, Subst[Int[((x/f)^m*(a + b*x^n + c*x^(2*n))^p)/(f^2 + x^2
), x], x, f*Tan[d + e*x]], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0]

Rule 6725

Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a + b*x^n), x]}, Int[v, x]
 /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ[n, 0]

Rule 730

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^(m + 1)
*(a + b*x + c*x^2)^(p + 1))/((m + 1)*(c*d^2 - b*d*e + a*e^2)), x] + Dist[(2*c*d - b*e)/(2*(c*d^2 - b*d*e + a*e
^2)), Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c,
 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && EqQ[m + 2*p + 3, 0]

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 987

Int[1/(((a_.) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symbol] :> With[{q = Rt[(c*d - a*f)^
2 + a*c*e^2, 2]}, Dist[1/(2*q), Int[(c*d - a*f + q + c*e*x)/((a + c*x^2)*Sqrt[d + e*x + f*x^2]), x], x] - Dist
[1/(2*q), Int[(c*d - a*f - q + c*e*x)/((a + c*x^2)*Sqrt[d + e*x + f*x^2]), x], x]] /; FreeQ[{a, c, d, e, f}, x
] && NeQ[e^2 - 4*d*f, 0] && NegQ[-(a*c)]

Rule 1030

Int[((g_) + (h_.)*(x_))/(((a_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symbol] :> Dist[-2*
a*g*h, Subst[Int[1/Simp[2*a^2*g*h*c + a*e*x^2, x], x], x, Simp[a*h - g*c*x, x]/Sqrt[d + e*x + f*x^2]], x] /; F
reeQ[{a, c, d, e, f, g, h}, x] && EqQ[a*h^2*e + 2*g*h*(c*d - a*f) - g^2*c*e, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{\cot ^2(d+e x)}{\sqrt{a+b \tan (d+e x)+c \tan ^2(d+e x)}} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{1}{x^2 \left (1+x^2\right ) \sqrt{a+b x+c x^2}} \, dx,x,\tan (d+e x)\right )}{e}\\ &=\frac{\operatorname{Subst}\left (\int \left (\frac{1}{x^2 \sqrt{a+b x+c x^2}}+\frac{1}{\left (-1-x^2\right ) \sqrt{a+b x+c x^2}}\right ) \, dx,x,\tan (d+e x)\right )}{e}\\ &=\frac{\operatorname{Subst}\left (\int \frac{1}{x^2 \sqrt{a+b x+c x^2}} \, dx,x,\tan (d+e x)\right )}{e}+\frac{\operatorname{Subst}\left (\int \frac{1}{\left (-1-x^2\right ) \sqrt{a+b x+c x^2}} \, dx,x,\tan (d+e x)\right )}{e}\\ &=-\frac{\cot (d+e x) \sqrt{a+b \tan (d+e x)+c \tan ^2(d+e x)}}{a e}-\frac{b \operatorname{Subst}\left (\int \frac{1}{x \sqrt{a+b x+c x^2}} \, dx,x,\tan (d+e x)\right )}{2 a e}-\frac{\operatorname{Subst}\left (\int \frac{-a+c-\sqrt{a^2+b^2-2 a c+c^2}-b x}{\left (-1-x^2\right ) \sqrt{a+b x+c x^2}} \, dx,x,\tan (d+e x)\right )}{2 \sqrt{a^2+b^2-2 a c+c^2} e}+\frac{\operatorname{Subst}\left (\int \frac{-a+c+\sqrt{a^2+b^2-2 a c+c^2}-b x}{\left (-1-x^2\right ) \sqrt{a+b x+c x^2}} \, dx,x,\tan (d+e x)\right )}{2 \sqrt{a^2+b^2-2 a c+c^2} e}\\ &=-\frac{\cot (d+e x) \sqrt{a+b \tan (d+e x)+c \tan ^2(d+e x)}}{a e}+\frac{b \operatorname{Subst}\left (\int \frac{1}{4 a-x^2} \, dx,x,\frac{2 a+b \tan (d+e x)}{\sqrt{a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{a e}+\frac{\left (b \left (a-c-\sqrt{a^2+b^2-2 a c+c^2}\right )\right ) \operatorname{Subst}\left (\int \frac{1}{-2 b \left (a-c-\sqrt{a^2+b^2-2 a c+c^2}\right )-b x^2} \, dx,x,\frac{b-\left (a-c-\sqrt{a^2+b^2-2 a c+c^2}\right ) \tan (d+e x)}{\sqrt{a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{\sqrt{a^2+b^2-2 a c+c^2} e}-\frac{\left (b \left (a-c+\sqrt{a^2+b^2-2 a c+c^2}\right )\right ) \operatorname{Subst}\left (\int \frac{1}{-2 b \left (a-c+\sqrt{a^2+b^2-2 a c+c^2}\right )-b x^2} \, dx,x,\frac{b-\left (a-c+\sqrt{a^2+b^2-2 a c+c^2}\right ) \tan (d+e x)}{\sqrt{a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{\sqrt{a^2+b^2-2 a c+c^2} e}\\ &=-\frac{\sqrt{a-c-\sqrt{a^2+b^2-2 a c+c^2}} \tan ^{-1}\left (\frac{b-\left (a-c-\sqrt{a^2+b^2-2 a c+c^2}\right ) \tan (d+e x)}{\sqrt{2} \sqrt{a-c-\sqrt{a^2+b^2-2 a c+c^2}} \sqrt{a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{\sqrt{2} \sqrt{a^2+b^2-2 a c+c^2} e}+\frac{\sqrt{a-c+\sqrt{a^2+b^2-2 a c+c^2}} \tan ^{-1}\left (\frac{b-\left (a-c+\sqrt{a^2+b^2-2 a c+c^2}\right ) \tan (d+e x)}{\sqrt{2} \sqrt{a-c+\sqrt{a^2+b^2-2 a c+c^2}} \sqrt{a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{\sqrt{2} \sqrt{a^2+b^2-2 a c+c^2} e}+\frac{b \tanh ^{-1}\left (\frac{2 a+b \tan (d+e x)}{2 \sqrt{a} \sqrt{a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{2 a^{3/2} e}-\frac{\cot (d+e x) \sqrt{a+b \tan (d+e x)+c \tan ^2(d+e x)}}{a e}\\ \end{align*}

Mathematica [C]  time = 1.40212, size = 264, normalized size = 0.67 \[ \frac{\frac{b \tanh ^{-1}\left (\frac{2 a+b \tan (d+e x)}{2 \sqrt{a} \sqrt{a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{a^{3/2}}+\frac{i \tanh ^{-1}\left (\frac{2 a+(b-2 i c) \tan (d+e x)-i b}{2 \sqrt{a-i b-c} \sqrt{a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{\sqrt{a-i b-c}}-\frac{i \tanh ^{-1}\left (\frac{2 a+(b+2 i c) \tan (d+e x)+i b}{2 \sqrt{a+i b-c} \sqrt{a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{\sqrt{a+i b-c}}-\frac{2 \cot (d+e x) \sqrt{a+b \tan (d+e x)+c \tan ^2(d+e x)}}{a}}{2 e} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[d + e*x]^2/Sqrt[a + b*Tan[d + e*x] + c*Tan[d + e*x]^2],x]

[Out]

((b*ArcTanh[(2*a + b*Tan[d + e*x])/(2*Sqrt[a]*Sqrt[a + b*Tan[d + e*x] + c*Tan[d + e*x]^2])])/a^(3/2) + (I*ArcT
anh[(2*a - I*b + (b - (2*I)*c)*Tan[d + e*x])/(2*Sqrt[a - I*b - c]*Sqrt[a + b*Tan[d + e*x] + c*Tan[d + e*x]^2])
])/Sqrt[a - I*b - c] - (I*ArcTanh[(2*a + I*b + (b + (2*I)*c)*Tan[d + e*x])/(2*Sqrt[a + I*b - c]*Sqrt[a + b*Tan
[d + e*x] + c*Tan[d + e*x]^2])])/Sqrt[a + I*b - c] - (2*Cot[d + e*x]*Sqrt[a + b*Tan[d + e*x] + c*Tan[d + e*x]^
2])/a)/(2*e)

________________________________________________________________________________________

Maple [B]  time = 18.206, size = 675102, normalized size = 1709.1 \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(e*x+d)^2/(a+b*tan(e*x+d)+c*tan(e*x+d)^2)^(1/2),x)

[Out]

result too large to display

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cot \left (e x + d\right )^{2}}{\sqrt{c \tan \left (e x + d\right )^{2} + b \tan \left (e x + d\right ) + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(e*x+d)^2/(a+b*tan(e*x+d)+c*tan(e*x+d)^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(cot(e*x + d)^2/sqrt(c*tan(e*x + d)^2 + b*tan(e*x + d) + a), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(e*x+d)^2/(a+b*tan(e*x+d)+c*tan(e*x+d)^2)^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cot ^{2}{\left (d + e x \right )}}{\sqrt{a + b \tan{\left (d + e x \right )} + c \tan ^{2}{\left (d + e x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(e*x+d)**2/(a+b*tan(e*x+d)+c*tan(e*x+d)**2)**(1/2),x)

[Out]

Integral(cot(d + e*x)**2/sqrt(a + b*tan(d + e*x) + c*tan(d + e*x)**2), x)

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(e*x+d)^2/(a+b*tan(e*x+d)+c*tan(e*x+d)^2)^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError